首页> 外文OA文献 >Flare Ribbon Energetics in the Early Phase of an SDO Flare
【2h】

Flare Ribbon Energetics in the Early Phase of an SDO Flare

机译:sDO Flare早期阶段的Flare Ribbon Energetics

摘要

The sites of chromospheric excitation during solar flares are marked byextended extreme ultraviolet ribbons and hard X-ray footpoints. The standardinterpretation is that these are the result of heating and bremsstrahlungemission from non-thermal electrons precipitating from the corona. We examinethis picture using multi-wavelength observations of the early phase of anM-class flare SOL2010-08-07T18:24. We aim to determine the properties of theheated plasma in the flare ribbons, and to understand the partition of thepower input into radiative and conductive losses. Using GOES, SDO/EVE, SDO/AIAand RHESSI we measure the temperature, emission measure and differentialemission measure of the flare ribbons, and deduce approximate density values.The non-thermal emission measure, and the collisional thick target energy inputto the ribbons are obtained from RHESSI using standard methods. We deduce theexistence of a substantial amount of plasma at 10 MK in the flare ribbons,during the pre-impulsive and early-impulsive phase of the flare. The averagecolumn emission measure of this hot component is a few times 10^28/cm^5, and wecan calculate that its predicted conductive losses dominate its measuredradiative losses. If the power input to the hot ribbon plasma is due tocollisional energy deposition by an electron beam from the corona then alow-energy cutoff of around 5 keV is necessary to balance the conductivelosses, implying a very large electron energy content. Independent of thestandard collisional thick-target electron beam interpretation, the observednon-thermal X-rays can be provided if one electron in 10^3 - 10^4 in the 10 MK(1 keV) ribbon plasma has an energy above 10 keV. We speculate that this couldarise if a non-thermal tail is generated in the ribbon plasma which is beingheated by other means, for example by waves or turbulence.
机译:太阳耀斑中色球激发的部位以延伸的极端紫外线带和硬X射线脚点为标志。标准解释是,这些是从电晕中析出的非热电子发热和and致辐射的结果。我们使用SOLM-08级耀斑SOL2010-08-07T18:24早期的多波长观测来检查这张图片。我们旨在确定耀斑带中加热的等离子体的特性,并了解功率输入在辐射损耗和传导损耗中的分配。使用GOES,SDO / EVE,SDO / AIA和RHESSI测量火炬带的温度,发射量度和微分发射量度,并推导出近似的密度值,获得非热发射量度以及输入到色带中的碰撞厚目标能量使用标准方法从RHESSI获得。我们推断出在火炬的预冲和初冲阶段,火炬带中存在大量的血浆,其浓度为10 MK。该热组件的平均柱发射量度是10 ^ 28 / cm ^ 5的数倍,我们可以计算出其预测的导电损耗在其测量的辐射损耗中占主导地位。如果输入到热带状等离子体的功率是由于来自电晕的电子束产生的碰撞能量沉积,则需要约5 keV的低能量截止来平衡导电损耗,这意味着非常大的电子能量含量。独立于标准碰撞厚目标电子束解释,如果10 MK(1 keV)带状等离子体中10 ^ 3-10 ^ 4的一个电子的能量高于10 keV,则可以提供观察到的非热X射线。我们推测,如果在带状等离子体中产生了非热尾,而该带状等离子体正通过其他方式(例如,通过波动或湍流)被加热,则这将很有意义。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号